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Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. 
These proteins, most of them being transmembrane, allow the active transport of an important 
variety of substrates across biological membranes, using ATP hydrolysis as an energy source. 
For an important proportion of these ABC transporters, genetic variations of the loci encoding 
them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial 
lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases 
(variations in ABCB4 and ABCB11). 
In this review, we first describe these ABC transporters and how their molecular dysfunction 
may lead to human diseases. Then, we propose a classification of the genetic variants 
according to their molecular defect (expression, traffic, function and/or stability), which may 
be considered as a general guideline for all ABC transporters’ variants. Finally, we discuss 
recent progress in the field of targeted pharmacotherapy, which aim to correct specific 
molecular defects using small molecules.
In conclusion, we are opening the path to treatment repurposing for diseases involving similar 
deficiencies in other ABC transporters.

Keywords: ABCA3; ABCB4; ABCB11; CFTR; Classification; Targeted pharmacotherapy.
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1. Introduction

A majority of the molecules essential for cell survival are not able to cross lipid membrane 
bilayers on their own. Thus, transmembrane proteins allowing their transport through these 
membranes are necessary for all living organisms. Around 10% of all genes encode proteins 
predicted to have a role in membrane permeability and regulating the traffic of molecules and 
ions entering/leaving the cell or organelles (1). Whereas most ion channels or transmembrane
facilitators do not use ATP hydrolysis as an energy source (they are named secondary 
transporters) for the transport of molecules/ions, primary active transporters require energy 
from ATP consumption to carry out such transport. Among them, a large family of genes 
encoding ATP-binding cassette (ABC) transporters are found in all domains of life (archaea, 
bacteria and eukaryotes) and are able to transport various substrates, molecules and ions using 
the energy released by ATP hydrolysis (2).
Most ABC transporters are highly substrate-specific (lipids, small molecules, drugs), while 
some of them are multi-specific (e.g. ABCB1/MDR1/Pgp; P-glycoprotein). The transport of 
specific substrates through these transporters is mostly unidirectional (import or export). For 
example, they are responsible for the import of essential nutrients (mainly in prokaryotic 
cells) or the export of essential lipids or cytotoxic compounds (3). Some of them are involved 
in lipid transport among which the ABCA, ABCD (except for ABCD4 involved in 
intracellular processing of cobalamin/vitamin B12) and ABCG subfamilies, as well as some 
ABCB subfamily transporters (ABCB1 and ABCB4) (for reviews, see (4,5)).
Both importers and exporters are found in prokaryotes (6,7), whereas in eukaryotes, ABC 
transporters are mainly exporters; even if some importers have been identified, they seem to 
have disappeared during evolution (8,9). ABC transporters share common features such as 
sequence and structure but they allow the specific transport of different substrates across 
biological membranes thanks to conformational changes allowed by ATP hydrolysis as an 
energy source, as recently shown by crystallography analyses and cryogenic electron 
microscopy (cryo-EM) (10,11).
A total of 49 ABC transporters have been identified in humans (including the ABCA11 
pseudogene) (3). They are divided into seven sub-families (from ABCA to ABCG), six of them 
being conserved in S. cerevisiae (12), mostly based on the sequence and organization of their 
domains (13). More recently, a classification based on the organization of transmembrane 
domains (TMDs) defined seven types of ABC transporters (14). With the exception of the 
ABCA and ABCG subfamilies which are type V transporters, having TMDs separately 
embedded in the membrane, without swapping (meaning the TMDs remain distinct and do not 
intersect within the membrane), and short intracellular helices, the other human ABC 
transporters belong to the type IV category, with swapped transmembrane helices, causing the 
TMDs to cross over each other within the membrane, and long intracellular loops (14).
An ABC transporter is usually composed of four domains, including two TMDs (each 
containing six transmembrane helices), embedded in the membrane lipid bilayer and forming 
a passage through the membrane, and two cytoplasmic nucleotide-binding domains (NBDs) in 
their cytosolic part allowing ATP binding and hydrolysis (15,16). Bacterial transporters are 
mainly expressed as half-transporters, which contain a TMD fused with a NBD, and 
dimerization (homo- or hetero-dimerization) is then necessary to obtain a functional protein, 
thus forming a full and functional transporter (17). 
On the contrary, for human ABC transporters, there is a majority of full transporters for which 
the four domains are encoded as a single polypeptide: four ABCB transporters (ABCB1, B4, 
B5 and B11), all ABCA and ABCC (3,13). The different membrane topologies of human 
ABC transporters are represented in Figure 1. Then, less than half of human ABC transporters 
are synthesized as half-transporters and need to form homodimers or heterodimers to be 
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functional; this is the case for seven ABCB transporters (ABCB2, B3, B6, B7, B8, B9 and 
B10), all ABCD and ABCG transporters. Heterodimerization of half transporters mainly 
concerns ABCB2/ABCB3 (TAP1/TAP2; transporters associated with antigen processing) and 
ABCG5/ABCG8 (3,18,13) ; oligomerization of half transporters (forming dimers or higher 
order of oligomers) concerns ABCB9 and ABCG2 (18). In addition, previous studies showed 
that among peroxisomal ABC transporters which are all half transporters, ABCD1, ABCD2 
and ABCD3 are also able to form homodimers, heterodimers or tetramers (19). Moreover, it is 
important to note that even full transporters are able to form oligomers such as ABCA1, 
ABCA3, ABCC1 and ABCC7 (20–22,18,23,24). About half of ABCB and ABCC 
transporters have an additional domain called TMD0 which consists of three to five additional 
membrane helices at the N-terminus of the protein. Depending on the transporter, it serves as 
an addressing signal (ABCB9/TAPL, TAP-like) or allows interaction with other proteins 
(ABCB6, ABCB9, ABCC8, ABCC9) (25,26). In the case of ABCC, TMD0 is bound to the 
rest of the protein through a cytoplasmic loop (L0) (14,27).
ABCA members differ from other ABCs by the length of their TMDs forming an elongated 
hydrophobic tunnel, and they have two large extracellular domains (ECDs), between the first 
two membrane helices of each TMD (28); these extracellular loops contain glycosylation sites 
essential for protein trafficking and stability (29,30) and are thought to serve as anchors for 
apolipoproteins in the case of ABCA1 (31). Moreover, the presence of two regulatory 
domains (RDs), one after each NBD, is specific to ABCA transporters and well conserved 
into this subfamily (32). This ABCA subfamily gathers the largest ABC transporters as they 
range in size from 1543 to 5058 amino acids (versus a maximum of 1581 amino acids for the 
other subfamilies) (3,33–35). Interestingly, ABCA4 is the only human ABC importer (36). 
Then, the ABCB subfamily includes transporters involved in various processes such as 
multidrug resistance (MDR), immune response (TAP complex), bile acid (BA) homeostasis 
(ABCB4 and ABCB11) or iron metabolism in mitochondria (ABCB7, ABCB8 and ABCB10) 
(3,35). In addition to ABCB1/MDR1/Pgp, ABCG2 and ABCC subfamily members are 
involved in MDR, except for ABCC8/9 (SUR1/2, sulfonylurea receptors 1 and 2) and ABCC7 
(CFTR, cystic fibrosis transmembrane conductance regulator), which is an ATP-gated anion 
channel. Finally, transporters of the ABCE and ABCF subfamilies are only composed of two 
fused NBDs (37,38) and do not appear to be involved in the transport of substrates; some 
studies showed their implication in the regulation of protein translation initiation, in 
chemoresistance of cancers, antibiotic resistance or in antiviral defense (39–44). 
Molecular defects in several human ABC transporters are correlated with rare diseases (Table 
1; for a review see (13)), the best described being cystic fibrosis (CF), for which defects in 
CFTR are identified. The present review focus on four members of the ABC superfamily 
involved in respiratory and cholestatic liver monogenic diseases: CFTR, ABCA3, ABCB4 
and ABCB11 (Table 2), excluding the role of other ABC transporters, such as ABCA1 or 
ABCC2 which have been identified as risk factors to develop chronic obstructive pulmonary 
disease and intrahepatic cholestasis of pregnancy, respectively (45,46). It is of note that 
genetic variations of ABCC2 are also directly involved in the pathogenesis of Dubin-Johnson 
syndrome (47), which is outside the focus of the present review. After a brief description of 
these transporters and their pathophysiology, we will propose a classification of their genetic 
variants identified in patients and we will discuss pharmacological tracks that are under 
investigation for these patients in the frame of personalized medicine approaches.

2. ABC transporters implicated in respiratory diseases

2.1. ABCC7/CFTR
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The ATP-binding cassette subfamily C member 7 (ABCC7), also called CFTR, is a type IV 
ABC transporter gene discovered in 1989 and named as such because genetic variants (locus 
7q31.2) cause CF (48–50) (Table 2). The CFTR protein has conserved motifs based on the 
assembly of five domains: two cytoplasmic NBDs (NBD 1 and 2), two TMDs (TMD 1 and 2), 
each containing six transmembrane helices, and the two homologous (TMD1-NBD1 and 
TMD2-NBD2) are linked by a large cytosolic regulatory R region (see 3D structure in Figure 
2). This R region contains numerous consensus phosphorylation sites (serine and threonine 
residues), which constitute targets for various cytosolic protein kinases, among them protein 
kinases A and C (51). CFTR function is therefore regulated by two complementary processes: 
first, it is phosphorylated on its R region (52); and second, the gating of phosphorylated 
CFTR is driven by ATP binding to cytosolic NBDs and hydrolysis (53). The 1,480 amino 
acid CFTR protein is the only member of this family functioning as an ion channel (54).

The physiological roles of CFTR in epithelial cells are enabled by two salient properties. 
First, its ability as a cAMP-dependent and ATP-gated ion channel to conduct bicarbonate and 
chloride anions through the apical plasma membrane constitutes its main physiological 
signature; CFTR regulates the amount and composition of epithelial secretions throughout the 
body (55,56) and variations in the gene can lead to multisystem pathologies of the lung 
(sticky mucus in bronchi), digestive tract (abnormal intestinal absorption, loss of exocrine 
pancreatic function) (55,57,58), and other systems (reproductive, salivary and renal) (59). 
Second, CFTR being in complex with multiple enzymes as well as scaffolding and signaling 
proteins (e.g. membrane receptors, ion channels and transporters), it creates a multifunctional 
platform linking the plasma membrane to the architecture of the cells, for example with 
cytoskeleton actors. The C-terminal end of CFTR interacts with PDZ (Postsynaptic density 
protein-95, Disc large tumor suppressor, Zonula occludens-1 (ZO-1)) domain-containing 
proteins (e.g. NHERF1, NHERF2, PDZK1, PDZK2, Shank2, and CAL), which affect its 
stability and lifetime (reviewed in (60)). On the other side of CFTR, its N-terminus also 
interacts with proteins such as syntaxins and SNAREs, thus regulating its traffic towards the 
plasma membrane (reviewed in (61)). 

Hereafter, we will focus on the role of CFTR in airway physiology and diseases. Airway 
epithelial cells possess a tandem of apical ion channels fine tuning transport of chloride and 
sodium ions: CFTR and the epithelial sodium channel (ENaC). The functional interaction of 
CFTR and ENaC in airway epithelium generates a sustained inhibition of ENaC (62), also 
driving water flow by osmosis, and controls the airway surface liquid (ASL). ASL is made of 
two phases: the periciliary liquid (PCL) and the mucus. The PCL, surrounding the cilia of 
airway ciliated cells (most of them are in the surface epithelium), is necessary for cilia 
beating. Above the cilia lies the hydrated mucus that traps debris in inhaled air, a process 
required for mucociliary clearance (mucus composition: 97.5% water, 1% ions, and 1.5% 
organic molecules) (63,64). The water and ion content of ASL is thus fine-tuned by the 
activity of these two ion channels to maintain a PCL height of approximately 7 µm and a 
water-saturated mucus to facilitate its elimination by cilia beating towards the pharynx (64). 
CFTR also regulates other transport proteins, like chloride and potassium channels, which are 
important for exocytosis and the formation of molecular complexes at the plasma membrane 
(65). Thus, the role of CFTR in epithelial cells is not restricted to its anion channel activity 
but non-channel-dependent roles can also be attributed to CFTR. As a whole, CFTR is thus a 
master controller of transepithelial ion and water transport.

CF is a monogenic autosomal recessive disease caused by variants of the CFTR gene (Table 
2). It is still considered as the most common genetic life shortening disease that causes severe 
damages to lungs, gastrointestinal tract and other organs (55). The CFTR gene encompasses 
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approximately 180,000 base pairs on the long arm of chromosome 7. CF is diagnosed in 
European-derived populations with a carrier frequency of approximately 1:25 and a mean 
incidence of 1:2,000-3,000 live births worldwide. Overall, 31,000 people are affected in the 
USA (57), almost 50,000 people in 38 European countries (67) and a total of more than 
160,000 individuals worldwide.

CF leads to progressive dysfunctions of the airways and digestive tract, with abnormal 
transepithelial electrolytes and water transport, dehydration of lung mucus and generalized 
perturbation of fluid homeostasis. The accumulation of dehydrated mucus reduces the 
efficacy of mucociliary clearance allowing pathogens to colonize the airway respiratory tract, 
leading to recurrent infections and inflammation and thus resulting in reduced respiratory 
capacity (64). CF is progressive and multiform with different stages ranging from mild to 
severe respiratory failure and/or to pancreatic sufficiency and insufficiency aggravating the 
disease. Whereas more than 2,100 variants in the CFTR gene have been identified (66–69), 
only 312 are reported as CF-causing. They affect CFTR protein through a variety of 
molecular mechanisms at the origin of different functional defects.

The most frequent CFTR pathogenic variant is the deletion of a phenylalanine at position 508 
(F508del), which is present in approximately 85% and 81% of the individuals in the USA (57) 
and in Europe (67), respectively. F508del-CFTR shows an inefficient maturation, a reduced 
plasma membrane expression (70,71), a gating defect (72), a reduced stability at the plasma 
membrane (73) and a thermal instability at physiological temperature (56,74,75). For clarity, 
one-letter code is used for genetic variations throughout this review.

2.2. ABCA3 
ATP-binding cassette transporter A3 (ABCA3) is a type V ABC transporter, consisting of two 
NBDs, two TMDs and includes two large ECDs (32). Recently, the presence of four 
extracellular helices (EHs), four intracellular helices (IHs) and two RDs have been 
characterized in its protein structure – see Figure 2 (76,77). IHs are essential for TMD-NBD 
interactions by forming many salt bridges and H-bonds, whereas RDs can act as structural 
latches, stabilizing the interaction between the two halves of the transporter, but their roles 
remain to be clarified (76). ABCA3 is a 1,704 amino acid protein involved in pulmonary 
surfactant formation and secretion, mainly expressed in lungs, in type II alveolar epithelial 
cells (AECII) (78). Although its highest expression is in lungs, some transcripts have been 
detected in other tissues, such as the trachea, liver, stomach, kidneys, adrenal glands, pancreas 
and brain (79), in which its role is not defined yet, ABCA3 variants exclusively leading to 
pulmonary symptoms. This protein has two N-glycosylation sites in the first ECD, which are 
essential for protein trafficking and stability (Asn124 and Asn140) (29). Thanks to the 
xLxxKN (or xLxKN) motif (L9LLWKN14 in ABCA3), a Golgi exit signal presents in most 
ABCAs, the protein is addressed to endosomes to further reach the membrane of 
multivesicular bodies (MVBs), which are lysosome-related organelles and precursors of 
mature lamellar bodies (LBs) (80). The extracellular loops of ABCA3 protein are directed 
towards the lysosomal matrix which contains many proteins, among which cathepsin L 
cleaves ABCA3 N-terminal part, just after Lys174 located in the first ECD. Then, the ABCA3 
protein becomes cleaved and has a molecular weight of approximately 150 kDa. The role of 
this proteolytic cleavage is not yet known, but it seems to be specific for ABCA3 among all 
human ABC transporters (81,82). It is important to note that for the ABCA3 protein, the so-
called 'extracellular loop' is actually located intracellularly in this transporter. This misnomer 
can lead to confusion, but it refers to a domain that, despite its name, is located within the 
cell.
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The pulmonary surfactant is a tensio-active film made of a complex mixture of phospholipids 
(about 80%) and surfactant proteins (SP), mainly SP-A, SP-B, SP-C and SP-D, covering the 
air-liquid interface of the alveoli (83). It prevents alveolar collapses at the end of expiration 
and has a protective role against pathogens. Pulmonary surfactant is produced by AECII and 
stored in LBs, before being secreted at the air-liquid interface by exocytosis. ABCA3, located 
at the limiting membrane of LBs (84,85), is essential for LB biogenesis and phospholipid 
translocation (mainly phosphatidylcholine and phosphatidylglycerol) from the cytoplasm into 
LBs. Once LB reach the apical pole of the cell, surfactant is secreted into the alveolar space 
by Ca2+-dependent exocytosis (86). ABCA3 is indirectly involved in SP-B and SP-C 
maturation since the latter depends on LB formation. Accumulation of surfactant protein 
precursors was observed in ABCA3-deficient patients and mice (87). Through its role as a 
cholesterol transporter for LB formation in AECII, ABCA3 additionally prevents the 
potentially toxic accumulation of free cholesterol in the cell (88,89). Therefore, ABCA3 is 
crucial for pulmonary surfactant biogenesis and homeostasis (90,91). When ABCA3 protein 
expression is impaired, evidence shows abnormal LBs and no surfactant production, causing 
lethal respiratory diseases in humans and mice (92–94).
ABCA3 is implicated in several respiratory disorders, ranging from pediatric to adult forms, 
with an autosomal recessive hereditary transmission (Table 2). In 2004, variations in the 
ABCA3 gene affecting both alleles were identified as the most common cause of congenital 
pulmonary surfactant deficiency associated with lethal respiratory distress syndrome (RDS) in 
full-term newborns (92). RDS is the most frequent and severe form of ABCA3-associated 
diseases. While two-thirds of the patients die early in life, partial recovery following RDS 
during the neonatal period can often occur, followed by interstitial lung disease (ILD) in 
children (95,96). Nowadays, onset of ILD during childhood or adulthood is observed only in 
very few patients and little is known about the clinical course of these cases (97–99). 
However, whatever the age of onset is, the disease can slowly evolve to lung fibrosis (100). In 
fact, in this recent review focused on children surviving beyond their first birthday without 
lung transplantation, Li and coll. highlighted that it mainly concerns patients carrying variants 
with a residual function of ABCA3 protein. This study also emphasized the progressive nature 
of ABCA3-related lung disease over time and suggests the use of disease-modifying 
treatments (100). The phenotypic variability, including variable onset, is mainly due to the 
type of variants involved, but environmental factors also seem to influence the onset of 
pulmonary fibrosis (98). ABCA3-associated diseases are rare, and patients present 
homozygous or compound heterozygous variants, most of them being private, thus making 
phenotype-genotype correlation studies difficult to perform.
Current therapeutic strategies for infants and children with progressive respiratory failure 
consist of oxygen supplementation, exogenous surfactant, glucocorticoids, 
hydroxychloroquine, and azithromycin administration (101–105). However, the response to 
these non-specific treatments is highly variable and, despite a rapid improvement in lung 
compliance and a decrease in oxygen requirements, there are still many deaths before 1 year 
of age, making them mostly ineffective. The only definitive treatment is lung transplantation, 
but morbidities and mortality remain significant after transplantation (106). A recent report 
explores emerging therapies, including personalized pharmacological treatments and gene 
therapy, aimed at addressing the specific genetic variants associated with these disorders 
(105). The article also stresses the need for ongoing research to develop these targeted 
therapies, highlighting the potential of gene therapy as a promising approach for some of 
these severe conditions.

3. ABC transporters in cholestatic liver diseases
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Bile is a watery fluid that performs several essential functions in the body, including 
elimination of xenobiotics and fat emulsification (107). The ABC transporters ABCB4 and 
ABCB11 allow the active flop/transport of phosphatidylcholine (PC) and bile salts at the 
canalicular membrane of hepatocytes, respectively (35). Cholesterol is also a bile component 
secreted by the ABCG5/G8 heterodimeric transporter, which will not be discussed in this 
review. Therefore, functional defects of these transporters may lead to bile secretion defects, 
which are the cause of several cholestatic diseases (Table 2).
3.1. ABCB4/MDR3
ABCB4, also known as multi-drug resistance protein 3 (MDR3), is a transmembrane 
glycoprotein of 1,279 amino acids located at bile canaliculi of hepatocytes (Table 2). Its 
expression is restricted to hepatocytes, although mRNA traces have been detected in other 
organs, including adrenal gland, heart, striated muscle, spleen, and tonsil (108). ABCB4 basic 
structure is consistent with the prototypical structure of an ABC transporter: the protein is 
organized in two TMDs, each composed of six α-helices, and two ATP-binding and 
hydrolyzing NBDs, a structure that has been confirmed by cryo-EM analyses – see Figure 2 
(109). Two N-glycosylation sites, essential for folding and maturation processes of ABC 
transporters in general (110), are also present in the first extracellular loop connecting the first 
two α-helices of TMD1 (111). A 'linker' region provides the link between TMD1 and TMD2 
(109). In addition, the cytosolic N-terminal region of ABCB4 is rich in phosphorylation sites, 
which are essential for transport function (112), while its C-terminal part has been shown to 
interact with the PDZ-domain containing protein EBP50 (ezrin-radixin-moesin (ERM)-
binding phosphoprotein 50), regulating plasma membrane trafficking of ABCB4 (113), also 
regulated by the interaction of the transporter with several molecular partners, including the 
small GTPase RAB10 and the serine/threonine kinase myotonic dystrophy kinase-related 
Cdc42-binding kinase isoform α (MRCKα) (114,115).
ABCB4 is responsible for the translocation of PC, a fundamental bile component, from the 
inner to the outer leaflet of the canalicular membrane of hepatocytes (116,117). Through the 
formation of mixed micelles, the role of PC is to solubilize cholesterol and protect the biliary 
epithelium from the detergent action of free hydrophobic bile salts (118). However, the 
mechanisms allowing PC flop and secretion into bile canaliculi are still unclear, even if recent 
cryo-EM studies suggested two alternative mechanisms using a “credit-card swipe” on the 
external side of the transporter (119), or an internal binding pocket involving a critical 
tryptophan residue – Trp234 (120).
ABCB4 dysfunctions result in cholesterol crystallization with increased biliary lithogenicity 
and damage to the biliary epithelium (121,122). Several hepatobiliary diseases are associated 
with variants in the ABCB4 gene, including low phospholipid-associated cholelithiasis 
(LPAC) syndrome, intrahepatic cholestasis of pregnancy (ICP) and progressive familial 
intrahepatic cholestasis type 3 (PFIC3) (122–124). PFIC3 is a rare, inherited, autosomal 
recessive disease, with predominantly homozygous or compound heterozygous ABCB4 
variants. It usually manifests in the first year of life, but may occur later during childhood, and 
is the most severe form of the diseases associated with ABCB4 deficiency, frequently 
progressing to cirrhosis and death due to liver failure (123,125,126). Interestingly, in some 
rare PFIC patients, no ABCB4 variant was identified (126). This might be explained by 
variants in ABCB4 molecular partners, factors, or regulatory genes. LPAC syndrome affects 
young adults (under 40 years of age) often carrying heterozygous variants and developing less 
severe clinical phenotypes (127). ICP is a transitory cholestatic disease that occurs during the 
third trimester of pregnancy and symptoms usually disappear after delivery (128,129).
In addition to various hormonal and environmental factors, variations in both ABCB4 and 
ABCB11 genes have been identified in ICP (128,129). It is detected in 3% of pregnancies and 
can lead to serious health effects for both the mother and the fetus (35). In addition to the 



10

diseases mentioned above, variants in the ABCB4 gene have been identified in other 
conditions, such as ductopenic liver disease (130) and chronic fibrosing cholestasis (131). 
Moreover, in a recent study conducted by Avena and colleagues, in which they investigated 
unexplained cases of cholestasis and gallstones, ABCB4 heterozygous variants were detected, 
suggesting that ABCB4-related diseases are underdiagnosed (132). Thus, patients of any age 
with cholestatic symptoms of unknown etiology should be considered for screening potential 
genetic variations in the ABCB4 gene (130,132).
3.2. ABCB11/BSEP
ABCB11, also known as bile salt export pump (BSEP), is also a transmembrane glycoprotein 
located at the bile canaliculi of hepatocytes, with a tissue distribution restricted to the liver 
(133,134). Structurally, the N-terminal part of this 1,321 amino acid transporter is extended 
and inserted into the substrate-binding cavity (135). The rest of the cryo-EM resolved 
structure is quite similar to ABCB4, except that four N-glycosylation sites are present on the 
first extracellular loop of ABCB11 – see Figure 2 (109,136).
ABCB11 is a BA transporter from the hepatocyte to bile canaliculi with a preference for 
taurine-conjugated BA (133). A significant part of the biliary flow is dependent on the BA-
generated osmotic force, described as bile salt-dependent flow (107,133). Furthermore, it 
appears that ABCB4 function and/or PC secretion are closely related to ABCB11 function 
since PC secretion is increased in the presence of taurocholate (137). The molecular 
mechanisms involved in ABCB11-mediated BA transport are still poorly described even if 
cryo-EM studies provided evidence that the transporter could bind up to two taurocholate 
molecules using two independent internal transport cavities (138).
Variations in the ABCB11 gene are associated with several cholestatic liver diseases, ranging 
from the mildest forms, ICP and benign recurrent intrahepatic cholestasis type 2 (BRIC2), to 
the most severe one, namely progressive familial intrahepatic cholestasis type 2 (PFIC2) 
(35,139) (Table 2). PFIC2 is a rare, inherited autosomal recessive disease, which, unlike 
PFIC3, manifests in early infancy or even in the first days of life with clinical signs of 
cholestasis, including jaundice and severe pruritus (126,140). Its pathophysiology is 
characterized by an accumulation of bile salts in the hepatocytes, resulting in hepatocellular 
damage and an increased risk of developing hepatocellular carcinoma (141,142). BRIC2 
patients have a clinically less severe phenotype characterized by recurrent episodes of 
cholestasis, which, unlike PFIC2, does not cause liver damage (143,144). Another particular 
disorder associated with ABCB11 and ABCB4 defects is the drug-induced liver injury (DILI), 
which is induced by the use of drugs that can potentially inhibit the activity of hepatic 
transporters and cause cholestatic disease symptoms that are not related to genetic variations 
of these transporters (145). Because the liver is the main organ of detoxification and drug 
metabolism, DILI may be the cause of many drug development failures, considering the 
importance of hepatobiliary ABC transporters.
For many years, the treatment of PFICs has been limited to the use of ursodeoxycholic acid 
(UDCA), or UrsodiolTM, in combination with rifampicin and cholestyramine for the 
symptomatic treatment or surgical treatment such as biliary diversion (146). Nevertheless, 
more than 50% of patients have no or insufficient response to this treatment, making liver 
transplantation the last therapeutic option before adulthood for these young patients 
(123,147). Alternatively and beyond the scope of the present review, it is interesting to note 
that the apical sodium-dependent bile acid transporter (ASBT) inhibitors Maralixibat 
(BylvayTM) and Odevixibat (LivmarliTM) are under clinical trials for PFIC2 patients (148,149) 
and may constitute combinatory therapeutic strategies for these patients.

4. Genetic variations of ABC transporters: Towards a unified classification
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Predicting drug-induced response is an attractive challenge that could be efficiently translated 
to patients for clinical decision making. However, to achieve this goal we must define a 
precise classification of gene variants indicating the consequences of the genetic defects on 
the production of a given protein mutant, its maturation, stabilization at the membrane and 
function.

4.1. ABCC7/CFTR 
Soon after the CFTR gene discovery, it was attempted to classify CFTR variants according to 
the molecular defect. Welsh & Smith first established four classes numbered from I to IV in 
1993 (150). Class I is composed of non-synthetized CFTR variants, mostly due to premature 
stop codons (e.g. R553X, G542X). Class II corresponds to defective CFTR processing (e.g. 
F508del). Class III CFTR variants (e.g. G551D) have severe altered gating. Class IV CFTR 
variants (e.g. R117H) show a reduced chloride permeability. The production of class V CFTR 
proteins is reduced without apparent effect on processing or function (151,152). The 
classification was further extended in 1999 with the class VI (153) to describe CFTR variants 
showing a reduced expression due to a rapid removal from the apical membrane (accelerated 
turn-over) caused by C-terminal truncations. Patients with classes I to III CFTR variants 
develop severe CF forms due to chloride and bicarbonate impermeabilities of epithelial cell 
apical membranes, then leading to lung and pancreas damages. On the contrary, patients with 
CFTR variants belonging to classes IV to VI develop milder forms of the disease due to the 
partial functioning of the CFTR channels consecutive of either a decreased unitary 
conductance, less protein or less stable protein (150).
Alternatively, the six classes could also be grouped differently (154). One group includes 
classes I, II and V for variants affecting plasma membrane expression of CFTR variants. A 
second group is composed of classes III and IV CFTR variants with abnormal channel 
activity: gating defect for class III and reduced conductance for class IV. However, it is 
difficult to precisely analyze whether a variant alters the gating without affecting chloride 
permeability (as for G551D or P67L variants) or reduces conductance without affecting 
gating (as for R117H) (154–156). Finally, truncated CFTR variants having normal 
biosynthetic processing and macroscopic chloride channel function, but reduced biological 
stability of their mature form, were proposed as a third group (153). Most of the severe CFTR 
variants belong to classes I, II and III (respectively 22%, 88% and 6% of people with CF who 
have at least one of these variants), but a majority of CF variants has not yet been functionally 
characterized. Classification is not an easy task and may change with additional tests. For 
example, the variant P67L was first classified as a class IV deleterious variant but 
reexamination of protein maturation and function showed that it is more likely a class II and 
III variant because the P67L-CFTR channel displays protein misfolding, impaired biogenesis, 
gating defect but normal conductance (155).
4.2. ABCA3 
To date, more than 300 pathogenic variants have been reported in the ABCA3 gene 
(NM_001089): they are located all along the protein without any hotspot. Except a few 
recurrent variants such as R288K, R1474W, A501E, A275V and E292V missense variants 
(95,157,158), ABCA3 variants are mostly private and rare. Affected individuals can bear 
homozygous or compound heterozygous variants. In case of homozygous or compound 
heterozygous nonsense and/or frameshift variants, called null variants (because no protein is 
produced), the outcome is lethal if no lung transplantation is planned (94). Other variants 
involving missense, splice site variants or in-frame insertion/deletion can allow a residual 
ABCA3 function and phenotypes are variable whether the variants are present in homozygous 
or compound heterozygous states (94,100). Since 2006, a classification subdivides ABCA3 
missense variants (accounting for 64% of all identified variants) into two types referring to 
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their effect on the maturation or the function of the protein: type I variants lead to immature 
misfolded proteins retained in the endoplasmic reticulum (ER), and type II variants produce 
mature proteins with a correct localization but a decreased phospholipid transport activity 
(159). More recently, we identified a new class of ABCA3 variants leading to a stability 
defect of the mature protein (160). This discovery brings the ABCA3 classification closer to 
the ones for other ABCs, since four classes can now be distinguished: class I exhibiting no 
protein, class II with defective protein processing, class III with altered phospholipid transport 
and class IV with a less stable mature form.
For rare genetic diseases, interpretation of familial genetic variants can be challenging, 
especially in cases with an atypical clinical presentation. To discriminate between pathogenic 
or benign consequences of the variants, assign the right diagnosis and adapt clinical care and 
genetic counseling of patients, it is crucial to assess the pathogenicity of these variants in 
vitro. To date, over the 300 known ABCA3 missense variants, only 12% have been 
characterized with structure-function analyses in cell model systems. While some research 
delves into the routing and maturation of proteins within cells, investigating the role of 
ABCA3, which is anchored to membranes of hard-to-isolate intracellular organelles, presents 
significant challenges. Nevertheless, methodologies like phospholipid uptake assessment have 
facilitated the exploration of trafficking and functional activities of mutated ABCA3 proteins. 
Two papers particularly summarize the various in vitro studies allowing assessment of 
trafficking and functional activity of mutated ABCA3 proteins (161,162). These in vitro 
studies and analyses conducted in recent years enable the examination of the effects of 
therapeutic molecules or treatments (163,164,103). A noteworthy example is the study on the 
impact of hydroxychloroquine treatment on cells with ABCA3 variants, highlighting the 
utility of these models for the preliminary assessment of new treatments (103). Indeed, this 
study emphasized a strong correlation between in vivo and in vitro responses to 
hydroxychloroquine. However, it also noted variable clinical responses based on the specific 
ABCA3 variants present, underscoring the importance of implementing personalized therapy.
4.3. ABCB4 and ABCB11
More than 500 and 600 distinct genetic variants have been identified in each locus encoding 
ABCB4 and ABCB11 transporters from patients with hepatobiliary diseases, respectively 
(158,165,166). Unlike CFTR, the genetic variations identified in patients are much less 
recurrent. They are mostly private and familial, except for the E297G and D482G variants of 
ABCB11, which are reported in more than 50% of PFIC2 patients across Europe (167,168). 
More than 80% of ABCB4 and ABCB11 genetic variations are missense variants and can 
affect all domains of the proteins, without any sticking hotspot. Moreover, these variations 
can have variable effects on the expression, traffic, function, or stability of these transporters 
(124,169). Therefore, their classification and characterization would allow personalized 
pharmacotherapy according to the type of variant(s) carried by the patient.
According to Delaunay and colleagues, a first classification of ABCB4 variations has been 
proposed: i) class I with defects in protein synthesis and expression, mostly caused by 
nonsense variants ; patients with this type of variants generally have the most severe 
phenotype; ii) class II with impaired maturation and intracellular traffic; the protein mostly 
remains trapped within the ER; iii) class III with impaired PC secretory activity but a correct 
canalicular membrane localization; iv) class IV with stability defects of the mature and active 
transporter (169). Moreover, a fifth class has been proposed for ABCB4 variants that do not 
display any significant defects based on experimental data from in vitro studies in cell models 
(169); however, this later class will not be further considered here since it does not designate 
defective variants but rather single-nucleotide polymorphisms (SNPs) with no associated 
defective phenotypes.
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For ABCB11, Byrne and colleagues have also classified missense variants and SNPs 
according to the identified transporter deficit (alteration of mRNA splicing, maturation, or 
protein function) (170). More recently, a classification of patients according to the severity of 
the phenotype induced by ABCB11 variations has also been proposed (168). Indeed, the 
clinical phenotype of patients depends on several factors, which are the number of affected 
alleles (homozygous or heterozygous) and the type and severity of the variant. Thus, 
according to this classification, homozygous or compound heterozygous patients in the 
BSEP1 category have a less severe phenotype and carry at least one copy of the E297G or 
D482G variants. BSEP2 patients have at least one missense variant other than E297G or 
D482G. Finally, BSEP3 patients have the most severe phenotype with variants predicted to 
induce a non-functional or unexpressed protein (168). However, this classification is mostly 
based on the severity of the disease in patients and not the cellular/molecular defects induced 
by ABCB11 variations, as proposed for ABCB4 (see above); and thus, this aspect would have 
to be further characterized in order to propose a more accurate classification required for 
targeted pharmacotherapy.
4.4. A unified classification? 
As shown above, numerous variant classifications have been proposed in each field of ABC 
transporters, and are still evolving according to advances in the understanding of these 
proteins (124,150). Therefore, developing a consensus categorization that can be adapted to 
all ABC transporters would be a valuable tool for personalized therapy, especially for patients 
with a disease-causing variant in an ABC transporter for which no treatment exists yet. 
Variants in the most studied ABC transporter, CFTR, are classified since 1993 into four 
classes (150). Since then, detailed classes have been added and now seven different classes of 
CFTR variants are proposed. Strikingly, great attention is paid by the community to these 
classifications promoting numerous discussions (154,171–173). Such classifications provide a 
detailed description of the different types of variants, which is currently more important for 
understanding the defective mechanisms of the mutated protein, rather than for developing 
therapies. Indeed, only five therapeutic approaches (readthrough compounds, correctors, 
potentiators, antisense oligonucleotides and stabilisers) have been linked to these variant 
classes, so far (154). This observation highlights the importance of focusing on the five 
variant classes that have been associated with specific treatments, if we hope to expand 
genotype-associated treatments to other ABC transporters. Then, since existing classifications 
for several ABC transporters are very close and all human ABC transporters share structural 
(and sometimes functional) similarities, it is reasonable to propose a new classification 
applicable to all ABC transporters. Moreover, recent studies illustrate the impact of CF-
developed pharmacotherapies on defective variants of other ABC transporters 
(124,163,164,174–178).
To propose a consensual and easy-to-implement classification for all ABC transporters 
variants, we suggest directly jumping to theratyping, with the following classification (Figure 
3):

Class 0: Absence of mRNA (non-rescuable = bypass therapy)
Class I: Absence of protein
Class II: Defective maturation/trafficking of the protein
Class III: Defective function/regulation of the protein
Class IV: Unstable mRNA or protein

The concept of theratype emerged in the CF field in 2015 with a review from Gary Cutting’s 
team (179), who emphasized the interest in classifying DNA variants according to the 
molecular-based treatment to which they respond. While frameshifts and nonsense variants 
will mainly lead to class 0 and I variants, respectively, these variants can be subjected to 
nonsense-mediated mRNA decay (NMD). If NMD occurs, it would switch variants from class 
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I to class 0, or give rise to reduced transcript amounts (class 0/I), we have thus classified 
frameshifts in class 0 and nonsense variants in class I but it will depend on each variant 
(Figure 4). It is much more challenging to predict the impact of missense variations on the 
trafficking, the activity and/or the stability of the transporters. Indeed, some bioinformatics 
tools exist to predict the pathogenicity of genetic variations, such as Polyphen2 (180), SIFT 
(181), SNAP2 (182), and PROVEAN (183) (the latter is unfortunately discontinued) but they 
do not predict the potential defect classes. Thus, in order to unambiguously characterize 
molecular defects of ABC transporter missense variants, they all have to be investigated, one 
by one, at the cellular level. This is also why classes II, III and IV variants are largely 
underestimated due to the lack of in vitro characterization of the variants, for which the 
characterization is mostly descriptive at the genetic/clinical level. More than 300 missense 
variants are identified for each transporter (CFTR/ABCC7, ABCA3, ABCB4 and ABCB11) 
but only a few of them have been further investigated and classified (Figure 4). Nowadays, 
routine diagnostic laboratories use either targeted next-generation sequencing panels or wide-
genome methods to identify variants (184). This strategy strongly contributes to enhance the 
number of variants identified in each ABC gene. And even if many variants are first 
interpreted based on criteria published by the American College of Medical Genetics and 
Genomics (185), it remains a huge number of variants which need to be further tested by 
functional assay. Therefore, the need for a better classification at the protein level is even 
necessary. 
Thus, the proposed unified classification system aims to provide a consistent framework for 
understanding ABC transporter variants, while several limitations and potential biases in 
existing classification systems must be acknowledged and some of them will not be 
overcome. Indeed, many variants may exhibit pleiotropic effects or context-dependent 
behavior, making it challenging to assign them to a single class (Figure 4). Additionally, a 
significant number of ABC transporter variants remain uncharacterized or incompletely 
characterized at the functional level, leading to potential misclassification or underestimation 
of certain classes (Figure 4). Whatever the difficulty is, we believe that proposing a unified 
classification is noteworthy as it can aid in determining the appropriate therapeutic strategy.

5. Targeted pharmacotherapies for defective ABC transporter variants

As shown in Table 1, there is a wide variety of diseases caused by ABC transporter variants. 
Those variants affect protein biogenesis at any stage from production to maturation, 
stabilization and function. Therefore, multiple pharmacological approaches are needed to 
address these defects. We present below several pharmacotherapeutic strategies for ABC 
transporter variants, such as readthrough molecules, splicing modulators and antisense 
oligonucleotides (ASO) for class I; pharmacological and chemical chaperones and 
proteostasis modulators for class II and potentiators for class III variants.
5.1. Pharmacological strategies for class I ABC transporter variants
5.1.1. Readthrough therapies
A nonsense variant leads to the apparition of an in-frame premature termination codon (PTC) 
triggering NMD, interrupting translation before a full-length protein is produced, thus no 
protein is translated. Some treatments termed as readthrough therapies suppress translation 
termination at PTCs by inserting an amino acid at the site of the PTC, thus allowing in-frame 
translation of a full-length protein (186). Aminoglycosides, like gentamicin or amikacin, 
partially restore CFTR activity in vitro and in vivo (187,188) but show modest readthrough 
efficacy in patients. The small molecule ataluren (PTC124, Translarna®) allows the ribosome 
to readthrough mRNA containing such a PTC, resulting in the production of a full-length 
protein but nevertheless failed phase 3 clinical trials (189). More recently, SRI-41315, a new 
compound able to restore CFTR expression and function has been identified by screening 
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molecules with readthrough activity. It potentiates aminoglycoside-mediated readthrough by 
synergistic action and constitutes a new hope to treat diseases caused by nonsense variants 
(190). Aminoglycosides (including G418 and gentamicin) have also been shown to rescue 
class I variants of ABCB11 (191).

5.1.2. Correction of splicing by antisense oligonucleotides (ASO) and modulators
ASO are short synthetic DNA or RNA molecules that target pre-mRNA fragments and 
modulate splicing process for aberrant forms or restore correct reading frame. The advantage 
of ASO is to skip some exons that can be mutated and can lead to PTCs. An ASO was 
designed to target a splicing defect of an ABCB11 variant identified in a PFIC2 patient. The 
c.76+29T>G variation in this patient resulted in the insertion of 42 bp in the mature mRNA. 
The ASO successfully excluded the pseudoexon formed, marking the first demonstration of 
ASO use as a therapeutic strategy for PFIC2 patients with intronic variants (192). A similar 
approach has been used to target exon 23 of the CFTR gene (carrying the variant W1282X) 
and led to increased expression level of CFTR-Δex23 protein levels and CFTR activity in the 
presence of CFTR modulators (193,194). 
There are three aerosolized ASO (ENaCrx, TPI ASM8 and granulocyte-macrophage colony-
stimulating factor – GM-CSF) developed by three different industries (IONIS, Pharmaxis and 
Savara Inc, respectively) with active clinical assays (see (195)). ENaCrx ASO reduce mucus 
accumulation in Nedd4L-KO mice (a model with mucus accumulation to copy CF symptom) 
and avoid the reduction of CFTR function. This ASO completed a phase 1/2a clinical trial for 
CF subjects on October 2020 (NCT03647228) and for moderate chronic obstructive 
pulmonary disease (COPD) with chronic bronchitis on December 2022 (NCT04441788). TPI 
ASM8 is a drug containing two ASO : TOP004 (targeting common β cytokine family of GM-
CSF, IL3, IL5) and TOP005 against the human chemokine receptor CCR3 (196). CCR3 and 
common β-subunit are involved in antigen-induced eosinophil influx which is responsible of 
inflammation pathway. As shown by Gauvreau and colleagues in 2011, TPI ASM8 allows a 
dose-dependent decrease of inflammation in in-vitro assays (196). Clinical trials have been 
conducted in asthma subjects (NCT01158898) and could be extended to other pulmonary 
diseases with associated modulators/correctors (197).  The factor GM-CSF, known as a 
growth factor may act as an inflammation marker too (198) and can induce perturbation on 
neutrophils and alveoli macrophages by a wrong coordination (199). GM-CSF could be a new 
potential pharmaceutical target to focus on the degradation of surfactant to reduce the risk of 
any infections. The Molramostim (human recombinant GM-CSF) are developed for this 
purpose. This drug is still in phase 2 of clinical trials (NCT03597347). Some small molecules 
are used to increase the expression of ABC transporters through gene transcription. This is the 
case of bezafibrate (BF) upregulating mRNA but not the total quantity of protein of ABCB4 
in human-derived hepatocytes (200). BF is an agonist of PPARα, a nuclear receptor that 
increases its transcriptional activity for ABCB4 (201) but this nuclear receptor is not well 
expressed in human-derived hepatocytes (202). PPARα is necessary to induce protein 
expression at a very defined localization, or to regulate ABCB4 redistribution at bile 
canaliculi for example. BF could also be used in a specific tissue-like pseudocanaliculi to 
increase ABCB4 production, which was confirmed in mice (203).
5.2. Pharmacological approaches for class II ABC transporter variants
These approaches are used to rectify the classic pathway of defective proteins, allowing them 
to be addressed to the plasma membrane without being degraded (via the lysosomal and/or 
Ub-proteasome pathways) despite the variant. Different approaches can lead to the rescue of 
defective proteins using pharmacological and chemical chaperones, as well as proteostasis 
modulators, their combination thereof, or the use of low temperature. These agents are 
collectively named correctors because they rescue the abnormal trafficking and maturation of 
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the pathological variant. Correctors are so far classified into 3 groups according to their 
binding sites on CFTR. Correctors C1 (e.g. VX-809 and VX-661) improve the formation of 
NBD1-multispanning domain 1 (MSD1), NBD1-MSD2 interfaces (204) and stabilize the 
interactions between NBD1 and intracellular loops 1 and 4 of CFTR (205,206). Correctors C2 
(e.g. Corr-4a) stabilize NBD2 of CFTR and its interface with other protein domains. 
Correctors C3 (e.g. VX-445) have been shown to rectify interdomain assembly of CFTR by 
interacting with transmembrane region and to correct the thermodynamic instability of 
purified NBD1-F508del (207).
5.2.1. Pharmacological chaperones
A pharmacological chaperone (also called pharmacoperone) is a small chemical that binds to 
the client protein either in early intracellular compartments or at the plasma membrane, forcing 
the misfolded protein into a conformation close to its native state. Among the first 
pharmacological chaperones discovered acting on an ABC transporter was CFcor-325 that 
rescued F508del- R258G-, S945L-, and H949Y-CFTR (maturation and delivery of a functional 
protein to the cell surface) (208). CFcor-325 could also rescue misprocessed variants of the 
ABC transporter P-gp. Soon after, the compound VX-809 (also named lumacaftor) was 
identified through high-throughput screening focused on correction of F508del-CFTR 
trafficking (209). Orkambi is a combination of the corrector VX-809 and the potentiator VX-
770 (also named ivacaftor). Orkambi was the first Food and Drug Administration (FDA)-
approved drug for people with CF, 12 years and older (NCT03150719), who have two copies 
of the F508del CFTR variant. Thereafter, the combination Trikafta/Kaftrio (VX-445 + VX-661 
+ VX-770, also named elexacaftor + tezacaftor + ivacaftor, respectively) was developed and 
made available in the USA in 2019 and in Europe in 2020 for F508del-CFTR homozygous or 
heterozygous 12 years and older individuals. Recent cryo-EM studies have provided insights 
into the mechanism of action of Trikafta/Kaftrio modulators (ivacaftor will be discussed in 
section 5.3.1). Tezacaftor acts by preserving CFTR stability within the ER during the early 
stages of its biosynthesis. This mechanism prevents premature degradation by specifically 
binding to a hydrophobic pocket located within TMD1. Elexacaftor stabilizes the 
transmembrane helices 10 and 11, along with a structural feature known as the lasso motif, 
these three domains being critical for CFTR maturation and function. In addition, elexacaftor 
stabilizes the interface between TMD2 and NBD1 (207,210). However, until now, the effect of 
these correctors has not been described on ABCA3, ABCB4 or ABCB11.

Other compounds are in development. For example, Vertex Pharmaceuticals Inc.develops 
other drugs: VX-152 + VX-661 + VX-770 for the same conditions as Kaftrio (clinical trial 
phase 2 identifier: NCT02951195). For others, development has been discontinued, such as 
miglustat and riociguat for F508del homozygous 18 years and older individuals (clinical trial 
phase 2 identifiers: NCT02325362 and NCT02170025, respectively) (211,212).
The ER-retained I541F missense variant of ABCB4, identified in a PFIC3 patient (Table 1), is 
rescued by cyclosporin A treatment (213). Cyclosporin A, which is a competitive inhibitor of 
ABCB1, would behave as a pharmacological chaperone. Cyclosporin A and some analogues 
have also been shown to rescue membrane targeting of other class II ABCB4 variants (169). 
However, cyclosporin A cannot be considered as a corrector with a therapeutic potential since 
it is highly inhibitory of the PC secretory function of ABCB4 (214). Correctors C10 
(KM11057), C13 (Corr-4C), and C17 (15jF), as well as the combinations of C3 + C18 (VRT-
325 + VRT-534) and C4 + C18 (Corr4a + VRT-534), allowed the rescue of maturation and 
canalicular localization of four distinct traffic-defective ABCB4 variants, I541F-, I490T, 
R545H- and L556R-ABCB4. However, such treatments did not permit a rescue of PC 
secretion activity of these defective ABCB4 variants and were also inhibitory of the activity 
of wild type ABCB4 (215). In silico molecular docking analyses attributed this inhibitory 
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effect to the potential interaction of these molecules with key residues involved in ABCB4 
function (215).

Certain mutated and mistrafficked ABCA3 proteins can be redirected and functionally 
corrected to wild type levels. This was shown using a phenotypic cell-based assay to identify 
new drug candidates for ABCA3-specific molecular correction by screening 1,280 FDA-
approved small molecules. Among them, cyclosporin A was again identified as a potent 
corrector, selective for some but not all ABCA3 variants (216). The ABCA3 variants Q215K, 
A1046E, K1388N or G1421R expressed in A549 cells, abnormally diffusely distributed in the 
cell, are rescued by the bithiazole correctors C13 and C17 tested among a panel of many 
CFTR correctors (C2, C4, C13, C14, C17, C18, and VX-809) (163). Correctors C13 and C17 
were the most potent compounds to correct these misfolded ABCA3 variants, indicated by 
processing and intracellular localization restoration. However, the other ABCA3 variant 
M760R was not rescued by any of the tested CFTR correctors, suggesting different cellular 
mechanisms lead to ABCA3 misfolding (163). Nevertheless, identification of lead molecules 
still represents an important step towards pharmacotherapy of ABCA3 misfolding-induced 
lung disease.

5.2.2. Chemical chaperones
Chemical chaperones are small molecules of two types: osmolytes and hydrophobic 
chaperones. They are not protein-specific because they are able to promote the correct folding 
of several ABC transporters but at higher concentrations than pharmacological chaperones 
(217). They are effective on cellular milieu to induce a better correction of misfolded proteins 
(218). The most common osmolytes are glycerol, trimethylamine-N-oxide (TMAO) and 
dimethyl-sulfoxide (DMSO) that can prevent aggregation of partially folded proteins (219). 
Other chemical chaperones such as 4-phenylbutyrate (4-PBA) and suberoylanilide 
hydroxamic acid (SAHA) act on reducing ER stress (220) and on heat shock proteins (221). 
Some ABCA3 mutant proteins are rescued by the chemical chaperone TMAO but neither by 
DMSO, glycerol, 4-PBA or SAHA (163). 4-PBA was also effective to rescue F508del-CFTR 
but with minimal clinical benefits for patients (222,223). DMSO and 4-PBA have been 
reported to rescue variants of several ABC transporters (for a review, see (124)). 4-PBA also 
rescues defective ABCB4 variants (224) with encouraging results obtained with PFIC2 
patients having class II ABCB11 variants (225–227).
5.2.3. Proteostasis modulators
Proteostasis regulators represent a promising group of molecules, although less well 
characterized compared to pharmacochaperones. They do not act directly on the mutated 
misfolded proteins but rather target classical proteostatic regulatory pathways like unfolded 
protein response and the heat shock response, and therefore have the potential to correct the 
phenotype of several misfolded proteins (228,229). New regulators of folding-trafficking 
defects for some ABC transporters have been discovered. In the case of CF, such molecules 
have been identified through screening campaigns as well as by rational approaches to target 
chaperones and/or glycosylation enzymes involved in proteostasis and have shown promising 
correction effects in vitro (230–232). One of these molecules, roscovitine, also known as 
Seliciclib© or CYC202, is a 2,6,9-trisubstituted purine that was identified as a potent and 
selective cyclin-dependent kinase inhibitor (233,234). Roscovitine has undergone numerous 
studies in many indications up to clinical phase trials in various cancers, rheumatoid arthritis, 
glaucoma and cystic fibrosis (235). Roscovitine partially corrects F508del-CFTR trafficking 
and function by promoting the apical membrane location of the mutated variant through a 
mechanism of action independent of kinase inhibition (236). Roscovitine and its analogues 
MRT2-235, MRT2-237 and MRT2-243 also corrected the localization at the plasma 
membrane, maturation and function of three class II ER-retained ABCB4 variants, namely 
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I541F, I490T and L556R (237). Therefore, such agents should be considered as therapeutic 
means for severe biliary diseases caused by this class of variants. 
The nonsteroidal anti-inflammatory drug ibuprofen (238) and glafenine (239) partially correct 
F508del-CFTR trafficking. Glafenine rescues the CFTR variants F508del-, G85E- and 
N1303K via cyclooxygenase 2 inhibition of the arachidonic acid pathway (239). However, 
glafenine has been clinically discontinued due to hepatoxicity (240).
Other molecules target ABCB4 and ABCB11 variants. This is the case of UDCA 
(UrsodiolTM), which is a physiological constituent of human bile, even if much less abundant 
than in bears (221). The beneficial use of this BA could be explained by a range of 
mechanisms of action, including cholangiocyte protection against the detergent action of 
endogenous BA, the induction of bile secretion, as well as anti-inflammatory and anti-fibrotic 
effects (242). At the molecular level, UDCA and its conjugate tauro-ursodeoxycholic acid 
(TUDCA) activate signaling cascades including the small GTP-binding protein Ras, ERK1/2 
(243,244), but also Src kinase and Ras/Raf to enhance ABCB11 insertion into canalicular 
apical membranes (245,246). Another pathway can be activated by rifampicin and 
cholestyramine, inducing CYP3A4 expression to stimulate hepatobiliary transporter systems 
(247). UDCA and rifampicin treatments have independent but complementary effects. 
However, although efficient, more than two-thirds of PFIC2 patients and around 50% of 
PFIC3 patients do not respond to UDCA, highlighting the limitation of these treatments 
(123,147).
The specificity of their action and suitability of targeting these pathways in patients have not 
been explored extensively. However, given that signaling pathways have long been utilized as 
therapeutic targets, careful attention to controlling proteostasis might be a potent and safe way 
to translate these findings to patients.
5.2.4. Low temperature
Denning and colleagues studied the molecular defect of F508del-CFTR and provided the first 
evidence in favor of the temperature sensitivity of misfolded proteins (71). Indeed, when cells 
expressing misfolded ABC proteins are cultured 24h at low temperature (27°-30°C), the class 
II ER-retained ABC variant reaches its final destination. Then, low temperature was also 
shown to restore processing and subcellular localization of ABCA3, ABCB4 and ABCB11 
variants (163,170,248–250). Although the mechanism underlying this effect on misfolded 
proteins is not completely solved, it might be related to heat-shock proteins and other 
molecular thermo-sensitive chaperones.
5.3. Pharmacological approach for class III ABC variants 
Potentiators have been developed to rescue defective ABC transport function. They are 
classified as types P1 and P2 according to their distinct binding sites.
5.3.1. P1 potentiators
Kalydeco (ivacaftor/VX-770) is a P1 potentiator approved for treating CF patients with gating 
variants (251), which correspond to 39 distinct variants (252). Ivacaftor has been shown to 
rescue the function of more than 15 class III ABCB4 variants (253,254). Ivacaftor also 
potentiates the function of ABCA3 variants: N568D (from 14% of WT to 114% in presence 
of ivacaftor of lipid transport activity), F629L (from 12% to 46% of WT) and G667R (2.8 
fold increase of lipid transport function with ivacaftor) (164). Ivacaftor also rescues the 
function of class III ABCB11 variants (T463I and A257V) (175,176). Cryo-EM studies 
demonstrated that ivacaftor binds to a specific binding site on CFTR at the protein-lipid 
interface, which involve the transmembrane helices 4, 5 and 8. This binding site corresponds 
to a region of transmembrane helix 8 that plays a crucial role in channel opening (251). More 
recently, using photoactivatable probes, the effect of ivacaftor on CFTR has also been shown 
to be mediated by another binding site located in the intracellular loop connecting NBD1 to 
TMD2 (255). The extent to which this mechanism of action is shared with other ABC 
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transporters remains unknown. Since cryo-EM studies demonstrated that ivacaftor binds to 
the central cavity of ABCB1 (256), which shares important sequence identity with ABCB4, 
we may speculate a similar interaction of ivacaftor with the phospholipid transporter. 
However, further studies will be required to fully elucidate the binding process and mode of 
action of ivacaftor on ABCA3, ABCB4 and ABCB11.
The AbbVie/Galapagos CFTR potentiators -1837, -3067, -2451, P2, P3 and P5 have potential 
binding sites spread through the ABC transporter sequence, including MSD1, MSD2, NBD1, 
NBD2 and lasso domain (257,258). Other CFTR potentiators are in clinical assays like 
QBW251 (Novartis) or CTP-656 (Vertex Pharmaceuticals Inc.) (both in phase 2, 
NCT02190604 and NCT02971839).
5.3.2. P2 potentiators
P2 potentiators include ASP-11 (arysolfonamide-pyrrolopyridin) and the flavonoid apigenin 
(259). The latter is also called co-potentiator since it acts in synergy with a P1 potentiator on 
two distinct binding sites to activate CFTR channels (260). Even if binding sites of P2 
potentiator remain to be identified, in silico studies on genistein, a CFTR co-potentiator, 
suggest the binding of genistein to the LSGGQ signature motif at the NBD1-NBD2 dimer 
interface (261). Genistein was also effective in some ABCA3 variants (164). The P2 
potentiator ASP-11 allows an 8-fold increase over VX-770 alone for the CFTR variants 
N1303K and W1282X; and a 1.5-fold increase for the CFTR variant G551D (259). Recently, 
the corrector elexacaftor/VX-445, was also shown to increase CFTR activity (262,263). Thus, 
VX-445 may also be a P2 co-potentiator acting in synergy with VX-770 (P1 potentiator) to 
restore the activity of class II and III variants. Indeed, VX-445 enables a 2-fold increase of 
VX-770 effect and in return, the presence of VX-770 allows a 4-fold increase of VX-445 
response (264).

6. Conclusions

In this review, we proposed a unified classification of the genetic variants of ABC 
transporters according to their molecular defects such as expression, traffic to the membrane, 
transport function and/or stability at the membrane, which may be considered as a general 
guideline for all ABC transporters’ variants. In fact, in each field, classification systems 
already exist but regardless of the classification used, the main pitfalls are the experimental 
biases. The in vitro assays performed to characterize variants may not fully recapitulate the 
physiological conditions or cellular contexts in which these transporters operate. This is 
particularly true for recessive disorders where patients are compound heterozygotes. 
Altogether, this adds an additional layer of complexity to the results and could potentially 
introduce biases in the classification. Indeed, with reference to the experimental data, 
classification is not as straightforward as we might wish. Therefore, standardized 
experimental protocols and collaborative efforts to share data and harmonize classification 
criteria could help reduce biases and improve the accuracy of variant classification. By 
acknowledging these limitations and potential biases, we can better appreciate the challenges 
involved in developing a robust and universally applicable classification system for ABC 
transporter variants and identify areas for future improvement.

We also discussed recent progress in the field of targeted pharmacotherapy, to correct specific 
molecular defects using small molecules, opening the path to treatment repurposing for 
diseases involving similar deficiencies in other ABC transporters. Like ABCC7/CFTR, 
therapeutic strategies targeting ABC transporter variants will be able to benefit from the first 
generation of molecules such as the correctors lumacaftor (VX-809), Trikafta/Kaftrio (VX-
445/VX-661/VX-770) or the potentiator ivacaftor (VX-770). While chemical chaperones are 
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non-specific and of limited clinical interest, proteostasis modulators represent an interesting 
group of molecules that will need to be further explored before clinical evaluation.

Based on CFTR natural history of variant classification, we can also anticipate that a variant 
will cumulate several defects and thus be attributed to different classes (265) (Figure 4). This 
is illustrated by the F508del-CFTR, the leader of the defective processing class II mutants, but 
then further defined as belonging to three classes (adding a gating defect and an accelerated 
protein turnover, see Figure 4), when the deciphering of molecular mechanisms was refined. 
If a variant belongs to multiple classes, the appropriate strategy would be to combine 
therapeutic approaches adapted for each single defect triggered by the variant. This is 
illustrated by the clinical success of the triple combination Trikafta/Kaftrio (VX-445/VX-
661/VX-770) that associates two correctors of different types and a potent potentiator, as 
demonstrated in vitro and in vivo (266,267).

While molecules active on CFTR are currently considered in the field of other ABC 
transporters involved in monogenic diseases, their mechanisms of action (corrector or 
potentiator) need to be better understood or at least tested on the ABC transporters of interest. 
Therefore, it is necessary to develop efficient tests to identify or repurpose molecules through 
a class-by-class approach using customized high-throughput screening. The challenge with 
rare and very rare diseases is that the models for high-throughput screening often need to be 
tailored to individual cases. This makes it difficult to draw broader conclusions. Developing 
innovative screening methods that can be adapted to individual variants will be essential such 
as structure-based drug design, which relies on the development of accurate 3D structures of 
ABC transporters. Our challenge ahead is thus significant but the path has been opened during 
the last two decades, in particular by studies on CFTR and other proteins, such as G-protein 
coupled receptors (268). With ongoing collaborative research, we should be able to propose 
new therapies for pathologies caused by ABC transporter variants, ultimately improving 
patient outcomes.
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Legends to figures

Figure 1. Membrane topology of human ABC transporters. The different membrane 
topologies of human ABC transporters are represented. Note the presence of large 
extracellular domains for the ABCA subfamily as well as an additional TMD0 at the N-
terminus of several transporters of the ABCB and ABCC subfamilies. The soluble ABCE and 
ABCF subfamilies are not represented here. NBD: nucleotide-binding domain; TMD: 
transmembrane domain; R: R domain. See text for details.

Figure 2. Structures of ABC transporters discussed in this review. PDB accession codes 
(https://www.rcsb.org/) are indicated above and correspond to cryo-EM structures that have 
been resolved in ATP-bound conformation. Gray areas represent membrane bilayers. Dashed 
lines indicate unresolved parts of the proteins.

Figure 3. Refined global classification of ABC transporter variants based on their cellular 
defect and potential therapeutic strategies.

Figure 4. Frameshift and nonsense variants are classified as class 0 and I respectively. 
Missense variants are classified as classes II, III and/or IV, with some selected examples. 
Multiple possible combinations of ABC variants with some chosen examples overrepresented 
by CFTR, which is the most studied ABC transporter, so far.
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Table 1. ABC transporters and related human diseases.

Gene Function Genetic disease (OMIM* numbers and links)

ABCA1 Cholesterol and phospholipid efflux Tangier disease (#205400)

ABCA3 Phospholipid efflux Surfactant metabolism dysfunction-3 
(#610921) (RDS, ILD)

ABCA4 Import of all-trans-retinal aldehyde 
across the photoreceptor cell 
membrane

Stargardt disease (#248200)

ABCA12 Lipid transport via lamellar granules Recessive congenital ichthyosis (#242500 and 
#601277)

ABCB2 Antigen processing for MHC-I 
presentation

HLA class I deficiency (#604571)

ABCB3 Antigen processing for MHC-I 
presentation

HLA class I deficiency (#604571)

ABCB4 Phosphatidylcholine floppase PFIC3 (#602347), LPAC (#600803), ICP 
(#614972)

ABCB7 Export heme from the mitochondria 
to the cytosol

X-linked sideroblastic anemia with ataxia 
(#301310)

ABCB11 Bile salt exporter PFIC2 (#601847), BRIC2 (#605479), ICP

ABCC2 Anionic compounds / Drugs 
(implicated in multidrug resistance)

Dubin-Johnson syndrome (#237500)

ABCC6 Adenosine-triphosphate cellular 
efflux (still debated)

Pseudoxanthoma elasticum (#264800)

CFTR 
(ABCC7)

Chloride and bicarbonate channel Cystic fibrosis (#219700), congenital bilateral 
absence of vas deferens (#277180)

https://www.omim.org/entry/205400
https://www.omim.org/entry/610921
https://www.omim.org/entry/248200
https://www.omim.org/entry/242500
https://www.omim.org/entry/601277
https://www.omim.org/entry/604571
https://www.omim.org/entry/604571
https://www.omim.org/entry/602347
https://www.omim.org/entry/600803
https://www.omim.org/entry/614972
https://www.omim.org/entry/301310
https://www.omim.org/entry/601847
https://www.omim.org/entry/605479
https://www.omim.org/entry/237500
https://www.omim.org/entry/264800
https://www.omim.org/entry/219700
https://www.omim.org/entry/277180
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ABCC8 Modulator of ATP-sensitive 
potassium channels and insulin 
release

Familial hyperinsulinemic hypoglycemia-1 
(#256450)

ABCC9 Drug-binding channel-modulating 
subunit of the extra-pancreatic ATP-
sensitive potassium channels

Cantú syndrome (#239850), dilated 
cardiomyopathy (#608569)

ABCD1 Peroxisomal import of very long 
chain fatty acids

X-linked adrenoleukodystrophy (#300100)

ABCD3 Peroxisomal import of fatty acids Congenital bile acid synthesis defect 5 
(#616278)

ABCG5 Sterol excretion Sitosterolemia type 2 (#618666)

ABCG8 Sterol excretion Sitosterolemia type 1 (#210250)

*OMIM: Online Catalog of Human Genes and Genetic Disorders.

RDS: Respiratory Distress Syndrome; ILD: Interstitial Lung Diseases; HI: harlequin ichthyosis, CIE: congenital 
ichthyosiform erythroderma, LI: Lamellar Ichthyosis, LPAC: Low Phospholipid-Associated Cholelithiasis 
syndrome; ICP: Intrahepatic Cholestasis of Pregnancy; PFIC2/3: Familial Progressive Intrahepatic Cholestasis 
type 2/3.

https://www.omim.org/entry/256450
https://www.omim.org/entry/239850
https://www.omim.org/entry/608569
https://www.omim.org/entry/300100
https://www.omim.org/entry/616278
https://www.omim.org/entry/618666
https://www.omim.org/entry/210250
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Table 2. ABC transporters discussed in this article and associated diseases.

ABCC7/CFTR ABCA3 ABCB4/MDR3 ABCB11/BSEP

Gene location 
(number of 
exons) 

7q31.2

(27)

16p13.3

(33)

7q21.12

(34)

2q31.1

(30)

Genomic 
sequence 
(RefSeq)

NG_016465.4 NG_011790.2 NG_007118.3 NG_007374.2

Main protein 
expression

Epithelial cells

(lung, pancreas)

Pneumocytes 
type II

Hepatocytes HepatocytesG
en

e/
Pr

ot
ei

n

Protein function Chloride channel PC and PG 
floppase

PC floppase Bile salt 
exporter

Disease names Cystic fibrosis

CBAVD1

CFTR-related 
disorders

RDS2

ILD3

PFIC34

LPAC5 
syndrome

ICP6

PFIC24

ICP6

BRIC7

Etiology Loss of function 
variants

Loss of function 
variants

Loss of function 
variants

Loss of function 
variants

Inheritance Autosomal 
recessive

Autosomal 
recessive

Autosomal 
recessive

Autosomal 
recessive

A
ss

oc
ia

te
d 

di
se

as
es

Age of onset Birth-adulthood Birth-adulthood Birth-adulthood Birth-adulthood

1Congenital bilateral agenesis of the vas deferens; 2Respiratory Distress Syndrome; 3ILD: Interstitial Lung 
Diseases; 4Progressive familial intrahepatic cholestasis types 2/3; 5Low phospholipid-associated cholelithiasis; 
6Intrahepatic cholestasis of pregnancy; 7Benign recurrent intrahepatic cholestasis.
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