Abstract
The pacemaker channel (HCN) is responsible for electrical activity in a wide range of excitable cells, including those of invertebrates. Using Xenopus oocytes and HEK cell, we show here that HCN-channel from Apis mellifera is activated by hyperpolarization, modulated by cAMP, and blocked by cesium. Its PNa/PK relative permeability is 1:3, and its unitary conductance is 1.5 pS, which is similar to that of the mammalian HCN2 channel. Moreover, bee h-current is blocked by high concentrations of ZD7288, and organochlorine pesticide chlordecone reduces Ih amplitude in a dose-dependent manner (IC50 value was 9.37 µM) and diminishes HCN conductance, while preserving voltage dependence. In contrast, Deltamethrin exhibits no discernible impact. Molecular docking of Chlordecone in a homology model of bee HCN generated by AlphaFold3 suggests a binding site located at the end of the S6 helix that could explain the conductance inhibition caused by Chlordecone.
Keywords
Honeybee, HCN channel insecticide chlordecone deltamethrin